Evaluation of 4D dose to a moving target with Monte Carlo dose calculation in stereotactic body radiotherapy for lung cancer.
نویسندگان
چکیده
We evaluated the four-dimensional (4D) dose to a moving target by a Monte Carlo dose calculation algorithm in stereotactic body radiation therapy (SBRT) planning based on the isocenter dose prescription. 4D computed tomography scans were performed for 12 consecutive patients who had 14 tumors. The gross tumor volume (GTV) and internal target volume (ITV) were contoured manually, and the planning target volume (PTV) was defined as the ITV with a 5-mm margin. The beam apertures were shaped into the PTV plus a 5-mm leaf margin. The prescription dose was 48 Gy in 4 fractions at the isocenter. The GTV dose was calculated by accumulation of respiratory-phase dose distributions that were mapped to a reference images, whereas the ITV and PTV doses were calculated with the respiration-averaged images. The doses to 99 % (D(99)) of the GTV, ITV, and PTV were 90.2, 89.3, and 82.0 %, respectively. The mean difference between the PTV D(99) and GTV D(99) was -9.1 % (range -13.4 to -4.0 %), and that between the ITV and GTV was -1.1 % (range -5.5 to 1.9 %). The mean homogeneity index (HI) for the GTV, ITV, and PTV was 1.14, 1.15, and 1.26, respectively. Significant differences were observed in the D(99) and HI between the PTV and GTV, whereas no significant difference was seen between the ITV and GTV. When SBRT planning is performed based on the isocenter dose prescription with a 5-mm PTV margin and a 5-mm leaf margin, the ITV dose provides a good approximation of the GTV dose.
منابع مشابه
Evaluation of Lung Dose in Esophageal Cancer Radiotherapy Using Monte Carlo Simulation
Background and purpose: Radiation therapy make an important contribution in the control and treatment of cancers. Lungs are the main organs at risk in esophageal cancer radiotherapy. Difference between the dose distribution due to the treatment planning system (TPS) and the patient's body dose is dependent on the calculation of the treatment planning system algorithm, which is more pronounced i...
متن کاملCalculation of absorbed dose rate in the lungs, ribs and skin by the mammosite applicator in breast cancer brachytherapy with MCNP
Introduction: Breast cancer is the most common cancer among women. Brachytherapy is one of the ways to treat breast cancer. In brachytherapy treatments, high-dose sources are used in interstitial placement. Here, Iridium-192 is used. This source emits gamma rays with energies ranging from 136 kV to 1060 kV electron volts. The activity of the used spring is 10 Ci. The simulated ...
متن کاملDosimetric Comparison of Different Prescription Modes in Lung Stereotactic Body Radiation Therapy
The purpose of this study was to compare the dose-volume statistics of stereotactic body radiotherapy (SBRT) for lung cancer between planning target volume (PTV): D95 and gross tumor volume (GTV): D99 dose prescriptions using Monte Carlo (MC) calculation. Plans for 183 patients treated between October 2010 and April 2013 were generated based on four-dimensional (4D) computed tomography (CT) und...
متن کاملEvaluation of the dose and flux of secondary particles in the lung tissue in breast proton therapy using the Monte Carlo simulation code
Unlike proton therapy, conventional radiation therapy directs X-rays not only at the tumor but also unavoidably at nearby healthy tissue. Protons deliver radiation to tumor tissue while the healthy structures will be spared during proton therapy. When protons travel through matter, secondary particles like neutrons and photons are produced. It is believed that the secondary dose can lead to sec...
متن کاملInvestigation of tumor motion influence on applied dose distribution in conventional proton therapy vs. IMPT a 4D Monte Carlo simulation study
Background: in radiation treatment of moving targets located in thorax region of patient body, the delivered dose does not match with the planned treatment, resulting in some over and under dosage in the tumor volume, as a function of motion magnitude and frequency. Several efforts have been done to investigate the target motion effects on dose distribution in the target and surrounding normal ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Radiological physics and technology
دوره 6 1 شماره
صفحات -
تاریخ انتشار 2013